NoC for faster SoC integration
The need for Network-on-Chip (NoC) has appeared at the time where chip makers realized that they could really integrate a complete system on a single die to build a System-on-Chip (SoC). I was in charge of the development of a large IC, integrating different type of functions (Analog and Digital) to support advanced TV application. It was a long development, far to be easy, but the chip was not a SoC (even if at that time -1995- it was using the largest array available in TI ASIC technology). There was no integrated CPU, no SRAM and no High Speed Interconnect I/O. The SoC definition we agree in the industry is that the chip at least integrates a CPU (or GPU) core, then some amount of internal SRAM (or DRAM) and various peripheral functions specific to the Application. Considering this definition, “real” SoC designs have appeared in the early 2000. There are certainly exceptions to this rule, or designs integrating an embedded CPU earlier, but this were reserved to very high production volume projects.
Related Semiconductor IP
- NoC System IP
- Cloud-active NOC configuration tool for generating and simulating Coherent and Non-Coherent NoCs
- Tessent NoC Monitor
- Network-on-Chip (NoC) Interconnect IP
- Coherent Network-on-chip (NoC) IP
Related Blogs
- Experts At The Table: SoC Integration Mistakes
- SoC Integration Mistakes
- Why Modern SoC need cache-coherent NoC?
- Bluetooth 5 IP is Ready for SoC Integration
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?