Experts At The Table: SoC Integration Mistakes
First of three parts: What’s missing; common problems and how to avoid them; what’s behind these errors and re-spins; proximity effects; communication breakdowns.
Semiconductor Engineering sat down to discuss integration challenges with Ruggero Castagnetti, distinguished engineer at LSI; Rob Aitken, an ARM fellow; Robert Lefferts, director of engineering in Synopsys’ Solutions Group; Bernard Murphy, chief technology officer at Atrenta; and Luigi Capodieci, R&D fellow at GlobalFoundries. What follows are excerpts of that roundtable discussion.
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- SoC Integration Mistakes
- NoC for faster SoC integration
- Bluetooth 5 IP is Ready for SoC Integration
- Integration and Verification of PCIe Gen4 Root Complex IP into an Arm-Based Server SoC Application
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms