NoC (Network-on-Chip) IP core
A NoC (Network-on-Chip) IP core is a pre-designed, pre-verified intellectual property block that enables efficient communication between different modules of a system-on-chip (SoC) or complex integrated circuits (ICs). Unlike traditional bus-based interconnects, a NoC IP core provides scalable, high-bandwidth, and low-latency communication, making it ideal for advanced SoC designs used in AI, automotive, multimedia, and networking applications.
By integrating a NoC IP core, semiconductor designers can improve data transfer efficiency, optimize power consumption, and enhance overall chip performance.
What Is a Network-on-Chip (NoC)?
A Network-on-Chip (NoC) is an on-chip communication architecture that connects multiple IP cores—such as CPUs, GPUs, memory controllers, accelerators, and peripherals—within an SoC.
Key features of NoC architectures include:
- Packet-based communication: Data is transmitted in packets, similar to network protocols, enabling efficient routing and congestion management
- Scalability: Easily supports dozens or even hundreds of IP cores without degrading performance
- Low latency and high bandwidth: Optimized to provide fast communication across multiple cores, critical for real-time processing
- Power efficiency: Reduces energy consumption compared to traditional bus-based interconnects
NoC IP cores are particularly important for heterogeneous SoCs, where diverse IP blocks require simultaneous, high-speed data exchange.
Why NoC IP Cores Are Important
Integrating a NoC IP core into an SoC provides multiple benefits:
- High-Performance Interconnect: Enables fast, low-latency communication between processors, memory, and accelerators
- Scalability: Supports complex SoC designs with many IP cores without performance degradation
- Power Optimization: Reduces energy consumption compared to traditional shared bus architectures
- Design Flexibility: Configurable topologies allow designers to tailor the NoC for specific SoC requirements
- Reduced Time-to-Market: Pre-verified IP cores accelerate SoC development and reduce integration risks
Related Articles
- Automating NoC Design to Tackle Rising SoC Complexity
- Breaking Barriers in SoC Design with Smart NoC Automation
- How NoC architecture solves MCU design challenges
- Learning Cache Coherence Traffic for NoC Routing Design
- Scaling AI Chip Design With NoC Soft Tiling
Related Products
- Network-on-Chip (NoC)
- NoC Verification IP
- Smart Network-on-Chip (NoC) IP
- NoC System IP
- Cloud-active NOC configuration tool for generating and simulating Coherent and Non-Coherent NoCs
See all 54 related products in the Catalog
Related Blogs
- From DIY To Advanced NoC Solutions: The Future Of MCU Design
- 2024 Set The Stage For NoC Interconnect Innovations In SoC Design
- The design of the NoC is key to the success of large, high-performance compute SoCs
- How to Overcome NoC Validation Multiple Challenges?
- Why Modern SoC need cache-coherent NoC?
Related News
- Blaize Deploys Arteris NoC IP to Power Scalable, Energy-Efficient Edge AI Solutions
- Arteris To Provide FlexGen Smart NoC IP In Next-Generation AMD AI Chiplet Designs
- FlexGen Streamlines NoC Design as AI Demands Grow
- Automating NoC Design Masters SoC Complexity
- Arteris Revolutionizes Semiconductor Design with FlexGen – Smart Network-on-Chip IP Delivering Unprecedented Productivity Improvements and Quality of Results
The Pulse
- MING: An Automated CNN-to-Edge MLIR HLS framework
- Fraunhofer IPMS develops new 10G TSN endpoint IP Core for deterministic high-speed Ethernet networks
- A new CEO, a cleared deck: Is Imagination finally ready for a deal?
- SkyeChip’s UCIe 3.0 Advanced Package PHY IP for SF4X Listed on Samsung Foundry CONNECT
- Fault Tolerant Design of IGZO-based Binary Search ADCs
- A 16 nm 1.60TOPS/W High Utilization DNN Accelerator with 3D Spatial Data Reuse and Efficient Shared Memory Access
- Victor Peng Joins Rambus Board of Directors
- Arteris Announces Financial Results for the Fourth Quarter and Full Year 2025 and Estimated First Quarter and Full Year 2026 Guidance
- Arteris Network-on-Chip Technology Achieves Deployment Milestone of 4 Billion Chips and Chiplets
- Accelerating Post-Quantum Cryptography via LLM-Driven Hardware-Software Co-Design
- Scaling AI from Edge to Data Center with SiFive RISC-V Vectors
- RISC-V Pivots from Academia to Industrial Heavyweight
- Arteris Technology Deployed More Broadly by NXP to Accelerate Edge AI Leadership
- Leadership in CAN XL strengthens Bosch’s position in vehicle communication
- Validating UPLI Protocol Across Topologies with Cadence UALink VIP