Get More Reliable Automotive ICs with a Shift Left Design Approach
By Jonathan Muirhead, Siemens EDA
EETimes | May 27, 2025
As the automotive industry races towards a future of connected, autonomous, and electrified vehicles, the complexity of integrated circuits (ICs) powering these innovations is reaching extraordinary levels. Automotive ICs are incorporating an increasing diverse mix of custom and third-party intellectual property (IP), each with unique performance requirements that must be meticulously verified to ensure flawless functionality and reliability.
Limitations of traditional verification methods
Traditional verification methods are increasingly struggling to keep pace with this rising complexity, creating multiple bottlenecks in the design process. These conventional approaches, primarily reliant on manual checking and complex custom design rule checks (DRCs), pull layout verification later in the design cycle when changes are more costly and time-consuming.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
- Shift Left for More Efficient Block Design and Chip Integration
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- Larger IC makers won't shift to foundries, concludes research firm
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models