Shift Left for More Efficient Block Design and Chip Integration
By David Abercrombie, Siemens EDA
EETimes (June 10, 2024)
Block/chip integration is a lot more complicated than it gets credit for. On the face of it, chip integration just involves collecting all the IP and other parts, then gluing them all together. In reality, chip integration is an overlapping series of iterations where the pieces that will make up the chip are still being designed, often by multiple different teams. The chip designer is trying to build something that is dependent on those components, but can’t wait until all the components are done to start the integration because of time-to-market pressures. That means that the chip designer is doing a lot of iterations with snapshots of IP blocks that are in various states of readiness. When they go through the flow, incomplete blocks will have millions of violations, too many to efficiently review taking a lot of time to debug and fix. How can block/chip integration flows change to be more efficient?
What if some of the time-consuming signoff verification tasks could be done quicker and earlier in the design process? Fix DRC errors with signoff accuracy directly from the place and route tool? Configure and manage all the verification jobs like a world-class maestro?
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Rising respins and need for re-evaluation of chip design strategies
- Get More Reliable Automotive ICs with a Shift Left Design Approach
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- Enabling Chiplet Design Through Automation and Integration Solutions
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models