Design clock controllers for hierarchical test
Ron Press (Mentor Graphics)
EDN (July 18, 2014)
Hierarchical test methodologies are being broadly adopted for large designs. They provide roughly an order of magnitude better ATPG (automatic test program generation) run time, reduce workstation memory requirements, and put the ATPG process much earlier in the design cycle than other methods. In hierarchial test, users need to add scan wrappers to blocks so the blocks can be treated as independent plug-and-play blocks with plug-and-play patterns.
Wrapper insertion is a change to the typical scan insertion practices, but it is fully automated with modern DFT tools so the effort isn't very large. Often, most of the wrapper cells can simply reuse existing registered IO flops. The tools can automatically find the necessary cells for IO that aren't registered or you can set a threshold for when to add a new dedicated wrapper cell. The rest of the process is pretty simple, but the clocking used for hierarchical test needs to support plug-and-play pattern retargeting. Thus, OCC (on-chip clock controller) design and location is a very important consideration with hierarchical test.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- Shift Left for More Efficient Block Design and Chip Integration
- Rising respins and need for re-evaluation of chip design strategies
- Optimizing Automated Test Equipment for Quality and Complexity
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models