Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 3
Part 3: implementing custom HBM
This is the third and final of a series from Alphawave Semi on HBM4 and gives and examines custom HBM implementations. Click here for part 1, which gives an overview of the HBM standard, and here for part 2, on HBM implementation challenges.
This follows on from our second blog, where we discussed the substantial improvements high bandwidth memory (HBM) provides over traditional memory technologies for high-performance applications, and in particular AI training, deep learning, and scientific simulations. In this, we detailed the various advanced design techniques implemented during the pre-silicon design phase. We also highlighted the critical need for more innovative memory solutions to keep pace with the data revolution as AI has pushed the boundaries of what computational systems can do. A custom implementation of HBM allows for greater integration with compute dies and custom logic and can, therefore, be a performance differentiator justifying its complexity.
To read the full article, click here
Related Semiconductor IP
- TSMC CLN3FFP HBM4 PHY
- HBM4 Memory Controller
- HBM4E PHY and controller
- HBM4/3E Combo PHY & Controller
Related Blogs
- Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 1
- Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 2
- LPDDR6: A New Standard and Memory Choice for AI Data Center Applications
- PAM4 and Coherent-lite Interconnect for Hyperscale Campuses and AI Data Centers
Latest Blogs
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet
- Arm and Synopsys: Delivering an Integrated, Nine-Stage “Silicon-to-System” Chip Design Flow
- Accelerate Automotive System Design with Cadence AI-Driven DSPs
- What Makes FPGA Architecture Ideal for Ultra-Low-Latency Systems?
- Introducing agileSecure anti-tamper security portfolio