Part 3: High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
This is the third in a series of blogs about Domain-specific accelerators (DSAs), which are becoming increasingly common in system-on-chip (SoC) designs. Part #1 addressed the challenges associated with data transfers between DSAs and the core complex, and showed how RISC-V offers a unique opportunity to optimize fine-grain communication between them and improve core-DSA interaction performance. Part #2 addressed the challenges associated with point-to-point ordering between cores and DSA memory, and how RISC-V offers a unique opportunity to optimize high-bandwidth communication between cores and DSAs. This third instalment will focus on the challenges associated with data transfers between DSA and memories, such as DDR, LPDDR or HBM, and explain how SoCs based on RISC-V can use an alternate approach to write the data directly to memory.
To recap, a DSA provides higher performance per watt by optimizing the specialized function it implements. Examples of DSAs include compression/decompression units, random number generators and network packet processors. A DSA is typically connected to the core complex using a standard IO interconnect, such as an AXI bus (Figure 1).
To read the full article, click here
Related Semiconductor IP
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
Related Blogs
- High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
- High-Bandwidth Core Access to Accelerators: Enabling Optimized Data Transfers with RISC-V
- Part 1: Fast Access to Accelerators: Enabling Optimized Data Transfer with RISC-V
- Fast Access to Accelerators: Enabling Optimized Data Transfer with RISC-V
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power