Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 2
Part 2: HBM implementation challenges
This is the second in a three-part series from Alphawave Semi on HBM4 and gives insights into HBM implementation challenges. Click here for part 1, for an overview on HBM, and in part 3, we will introduce details of a custom HBM implementation.
Implementing a 2.5D System-in-Package (SiP) with High Bandwidth Memory (HBM) is a complex process that spans across architecture definition, designing a highly reliable Interposer channel and robust testing of the entire data path including system level validation. Here is a breakdown of the key elements and considerations involved in implementing a 2.5D HBM design.
Advanced Design and Architecture Planning
Determining the necessary bandwidth, latency and power requirements are important to plan overall system architecture. A monolithic chip can also be disaggregated to smaller specialized modules called chiplets to handle specific functions within the system. This approach can provide enhanced design flexibility, power efficiency, yield and overall scalability.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 1
- Redefining XPU Memory for AI Data Centers Through Custom HBM4 – Part 3
- HBM4 Boosts Memory Performance for AI Training
- High-Speed Test IO: Addressing High-Performance Data Transmission And Testing Needs For HPC & AI
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility