Sub-Threshold Design - A Revolutionary Approach to Eliminating Power
Mike Salas, VP Marketing, Ambiq Micro
 EDN (December 22, 2014)
Low energy consumption has replaced performance as the foremost challenge in electronic design. Performance is important, but it must now accede to the energy capacity of batteries and even the minimal output of energy harvesters. Performance at all costs no longer works; energy consumption is now the dominant requirement. While reducing energy consumption is critically important throughout the electronics industry, the question is: how should that goal be achieved? Ambiq Micro’s approach moves beyond the incremental improvements that other semiconductor companies have taken and makes revolutionary advances through a unique approach to the problem: sub-threshold circuit design.
Energy is consumed in two fundamental ways: as leakage, when a circuit’s state isn’t changing, and dynamically as internal nodes are charged up and down. For realistic circuits in operation, dynamic power dominates – especially for the higher power supply voltages used in most designs today.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
 - MIPI SoundWire I3S Peripheral IP
 - P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
 - LPDDR6/5X/5 Controller IP
 - Post-Quantum ML-KEM IP Core
 
Related White Papers
- The evolution of embedded devices: Addressing complex design challenges
 - PCI Express 3.0 needs reliable timing design
 - PCI Express 3.0 needs reliable timing design
 - Design patterns in SystemVerilog OOP for UVM verification
 
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
 - Multimodal Chip Physical Design Engineer Assistant
 - Attack on a PUF-based Secure Binary Neural Network
 - BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
 - FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics