Massively parallel frameworks for in-design verification
David White & Xiao Lin, Cadence
EDN (October 24, 2016)
In-design verification is needed to shorten design cycles and maximize circuit performance, ensuring physical designs are correct by construction. Physical verification often forces a decision between accuracy and performance for larger designs. Cloud infrastructure needs are pushing the industry toward larger multi-core server architectures and massively parallel computing frameworks. This article explores how these massively parallel frameworks can be combined with in-design verification methodologies to allow field solvers to provide golden levels of extraction and simulation accuracy at acceptable levels of performance for larger designs.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Multimode sensor processing using Massively Parallel Processor Arrays (MPPAs)
- Implementing Parallel Processing and Fine Control in Design Verification
- A closer look at security verification for RISC-V processors
- A formal-based approach for efficient RISC-V processor verification
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design