Massively parallel frameworks for in-design verification
David White & Xiao Lin, Cadence
EDN (October 24, 2016)
In-design verification is needed to shorten design cycles and maximize circuit performance, ensuring physical designs are correct by construction. Physical verification often forces a decision between accuracy and performance for larger designs. Cloud infrastructure needs are pushing the industry toward larger multi-core server architectures and massively parallel computing frameworks. This article explores how these massively parallel frameworks can be combined with in-design verification methodologies to allow field solvers to provide golden levels of extraction and simulation accuracy at acceptable levels of performance for larger designs.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Multimode sensor processing using Massively Parallel Processor Arrays (MPPAs)
- Implementing Parallel Processing and Fine Control in Design Verification
- A closer look at security verification for RISC-V processors
- A formal-based approach for efficient RISC-V processor verification
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models