Early Interactive Short Isolation for Faster SoC Verification
By Ritu Walia, Siemens (December 4, 2024)
In modern semiconductor design, shrinking technology nodes and increasing circuit complexity make layout versus schematic (LVS) verification more challenging. One of the most common and critical errors designers find during LVS runs is shorted nets. Identifying and isolating these shorts early in the process is essential to meeting deadlines and ensuring a high-quality design. However, finding shorts in early design cycles can be a time-consuming and resource-intensive task because the design is “dirty” with numerous shorted nets.
To tackle this challenge, designers need a robust LVS solution to address shorts early in the design flow. This article explores common short isolation challenges and presents a novel solution that integrates LVS runs with a powerful debug environment for faster and more efficient verification.
Design size, component density, and advanced nodes like 5 nm and below all contribute to the growing complexity of SoC designs. With layouts containing billions of transistors, connectivity issues like shorted nets can proliferate. Shorts can occur between power/ground networks or signal lines and may result from misalignment, incorrect placement, or simply the close proximity of electrical connections in densely packed areas of the chip.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Simplifying SoC Verification by communicating between HVL Env and processor
- Creating core independent stimulus in a multi-core SoC verification environment
- Fast, Thorough Verification of Multiprocessor SoC Cache Coherency
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models