Make SoCs flexible with embedded FPGA
Geoff Tate, Flex Logix
EDN (November 30, 2016)
Systems designers have long sought to provide programmability and flexibility in their systems designs to meet varying customer needs and evolving standards. The two most common approaches - FPGAs and MPUs/MCUs - provide different kinds of capabilities and complement each other, but have typically been separate devices. Now, chips with both processors and embedded FPGA are becoming a design option.
With the growth of connectivity, information, and data, there is a growing need for new processing capabilities that can span from ultra-low power <$1 microcontrollers to very large networking chips. Moore’s Law has given rise to the availability of new SoCs and MCUs for existing and new markets with each one of these SoCs/MCUs designed specifically for the market segment it is being targeted. This widespread use of special-purpose architectures greatly increases the need for new designs, however, and the rise of new markets (e.g., IoT) and device types (e.g., sensors) for these new markets is growing faster than the SoC types available.
To read the full article, click here
Related Semiconductor IP
- eFPGA
- eFPGA on GlobalFoundries GF12LP
- Heterogeneous eFPGA architecture with LUTs, DSPs, and BRAMs on GlobalFoundries GF12LP
- eFPGA Soft IP
- Radiation-Hardened eFPGA
Related White Papers
- FPGA Prototyping of Complex SoCs: RTL code migration and debug strategies
- Designing embedded SoCs using older resistive technologies
- Setting up secure VPN connections with cryptography offloaded to your Altera SoC FPGA
- LTE Single Carrier DFT: Faster Circuits with Reduced FPGA LUT/Register Usage
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems