Hardware/software design requirements planning - Part 2: Decomposition using structured analysis
Jeffrey O. Grady, JOG Systems Engineering, Inc.
EETimes (11/7/2011 11:41 PM EST)
In this series of articles, Jeffrey O. Grady, author of “System Verification,” delineates the basics of requirements planning and analysis, an important tool for using Agile programming techniques to achieve better code quality and reliability in complex embedded systems software and hardware projects. Part 2: Decomposition using structure analysis Structured decomposition is a technique for decomposing large complex problems into a series of smaller related problems. We seek to do this for the reasons discussed earlier.
We are interested in an organized or systematic approach for doing this because we wish to make sure we solve the right problem and solve it completely. We wish to avoid, late in the development effort, finding that we failed to account for part of the problem that forces us to spend additional time and money to correct and brings into question the validity of our current solution.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Routing density analysis of ASICs, Structured ASICs, and FPGAs
- Hardware/software design requirements analysis: Part 1 - Laying the ground work
- Hardware/software design requirements planning: Part 3 - Performance requirements analysis
- System Performance Analysis and Software Optimization Using a TLM Virtual Platform
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS