Hardware/software design requirements analysis: Part 1 - Laying the ground work
Jeffrey O. Grady, President, JOG Systems Engineering, Inc.
EETimes (11/6/2011 8:49 PM EST)
This series of articles is about the process of developing good specifications for any hardware or software development project. In the English-speaking world, requirements are phrased in English sentences that cannot be distinguished structurally from English sentences constructed for any other purpose.
Yes, specifications are full of sentences. It is relatively easy to write sentences once you know what to write them about. A requirement is simply a statement in the chosen language that clearly defines an expectation placed on the design process prior to implementing the creative design process.
Requirements are intended to constrain the solution space to solutions that will encourage small-problem solutions that synergistically work together to satisfy the large-problem (system) solution.
Requirements are formed from the words and symbols of the chosen language. They include all of the standard language components arranged in the way that a good course in that language, commonly studied in the lower grades in school, specifies.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Hardware/software design requirements planning - Part 2: Decomposition using structured analysis
- Hardware/software design requirements planning: Part 3 - Performance requirements analysis
- Consumer IC Advances -> Meeting MPEG-4 advanced audio coding requirements
- SoC Test and Verification -> Coverage analysis essential in ATE
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design