Embedded FPGA: Changing the Way Chips Are Designed
Learn how embedded FPGAs work and what advantages they offer.
Geoff Tate, Flex Logix
allaboutcircuits.com (January 4, 2017)
One of the most critical problems chip designers face today is having to reconfigure RTL at any point in the design process, even in-system. Unfortunately, chip designers have no way of knowing if they will have to do this until it is too late. Any changes at that point end up costing millions of dollars and delaying projects by months.
With embedded FPGA, this problem goes away. Chip designers can finally go into a project knowing they have the flexibility to change RTL at any time during the project, something that has never been possible before.
Because embedded FPGA is a new technology, we will first highlight how it differs from standard FPGAs, which have been around for decades. Basically, an embedded FPGA is an IP block that allows a complete FPGA to be incorporated into an SoC or any kind of integrated circuit. Just as RAM, SERDES, PLL, and processors transitioned from standalone chips to routine IP blocks, FPGA is now also an IP block.
To read the full article, click here
Related Semiconductor IP
- eFPGA on GlobalFoundries GF12LP
- eFPGA IP — Flexible Reconfigurable Logic Acceleration Core
- Heterogeneous eFPGA architecture with LUTs, DSPs, and BRAMs on GlobalFoundries GF12LP
- eFPGA Soft IP
- Radiation-Hardened eFPGA
Related Articles
- Make SoCs flexible with embedded FPGA
- How to maximize FPGA performance
- How to Choose the Right FPGA
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor