How to Choose the Right FPGA
By Rodger H. Hosking, Pentek
January 18, 2007 -- dspdesignline.com
Field Programmable Gate Arrays (FPGAs) are a tremendously exciting implementation platform. They are used to replace Application Specific ICs (ASICs), such as digital receivers, and programmable general purpose processors or DSPs.
Even though programmable logic has been around for many years, the latest generation FPGAs are more powerful and are making their way as the right solution for many embedded applications.
Each new generation of FPGA devices delivers faster speeds, improved density, larger memory resources and more flexible interfaces.
Embedded system board vendors face a difficult challenge, since each customer has a different mission unknown to the board designer at the time FPGA component selection is made. Successful new product definition requires an intimate knowledge of available device features, insights into market space application trends, and an appreciation for how FPGA resources map into those applications.
This article highlights the latest family of Xilinx FPGAs and analyzes their specific features and tradeoffs to aid engineers in selecting the most appropriate FPGA for their application needs. Comparisons of the most recent Xilinx products are provided with regards to performance, power consumption, signal integrity, serial fabrics, memory, and speed.
January 18, 2007 -- dspdesignline.com
Field Programmable Gate Arrays (FPGAs) are a tremendously exciting implementation platform. They are used to replace Application Specific ICs (ASICs), such as digital receivers, and programmable general purpose processors or DSPs.
Even though programmable logic has been around for many years, the latest generation FPGAs are more powerful and are making their way as the right solution for many embedded applications.
Each new generation of FPGA devices delivers faster speeds, improved density, larger memory resources and more flexible interfaces.
Embedded system board vendors face a difficult challenge, since each customer has a different mission unknown to the board designer at the time FPGA component selection is made. Successful new product definition requires an intimate knowledge of available device features, insights into market space application trends, and an appreciation for how FPGA resources map into those applications.
This article highlights the latest family of Xilinx FPGAs and analyzes their specific features and tradeoffs to aid engineers in selecting the most appropriate FPGA for their application needs. Comparisons of the most recent Xilinx products are provided with regards to performance, power consumption, signal integrity, serial fabrics, memory, and speed.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- DSP or FPGA? How to choose the right device
- How FPGA technology is evolving to meet new mid-range system requirements
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant