How to design 65nm FPGA DDR2 memory interfaces for signal integrity
By David Banas, Xilinx
January 24, 2007 -- pldesignline.com
Practical techniques for "correctness by design" in DDR2 interfaces, from a signal integrity (SI) perspective; follow these guidelines to make your next 65nm FPGA design a success.
January 24, 2007 -- pldesignline.com
Practical techniques for "correctness by design" in DDR2 interfaces, from a signal integrity (SI) perspective; follow these guidelines to make your next 65nm FPGA design a success.
This article presents practical techniques for incorporating "correctness by design" in DDR2 interfaces, from a Signal Integrity (SI) perspective, using the current generation of available design tools. Some common DDR2 design errors are analyzed, as well as the tradeoffs between some popular design alternatives.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- How to design secure SoCs Part IV: Runtime Integrity Protection
- Meeting signal integrity requirements in FPGAs with high-end memory interfaces
- Memory Design Considerations When Migrating to DDR3 Interfaces from DDR2
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design