Weebit ReRAM: NVM that's better for the planet
Together with our R&D partner CEA-Leti, we recently completed an environmental initiative in which we analyzed the environmental impact of Weebit’s Resistive Random-Access Memory (ReRAM / RRAM) technology compared to Magnetoresistive Random Access Memory (MRAM) – another emerging non-volatile memory (NVM) technology. The results were extremely positive for Weebit’s Oxide-based ReRAM (OxRAM), which was jointly developed with Leti, showing the environmental impact of ReRAM is much lower than that of MRAM.
A bit of background
The overall contribution of the semiconductor industry to global greenhouse gas (GHG) emissions is increasing as demand for semiconductors continues to grow. To mitigate negative impacts, environmental programs are extremely important for all players in the semiconductor ecosystem. In addition to CO2 emissions, semiconductor manufacturing can use a significant amount of energy, water, rare natural resources, and chemicals, which can contribute to global warming. The choices semiconductor companies make in design and specification phases, including their memory technology choices, are key to reducing a company’s overall carbon footprint.
MRAM is effectively the only other kind of emerging NVM that is commercially available today at foundries. It stores data as resistance using magnetic fields (versus ReRAM which stores it as resistance of a solid dielectric material, and flash which stores data as electric charges). MRAM has high endurance and is more often used as a replacement for embedded SRAM than for embedded flash. Still, there are companies using MRAM today as a replacement for embedded flash that do so because until now there hasn’t been a production-ready alternative at smaller geometries.
Compared to MRAM, Weebit ReRAM is the logical choice for embedded applications, with the number one reason being ease of manufacturing. Weebit ReRAM requires significantly fewer layers and masks and doesn’t use exotic materials or special equipment, so it can be manufactured in the standard CMOS production line and doesn’t require designated cleanroom facilities. All this translates to lower costs. MRAM adds an estimated 30-40% to wafer cost, compared to ReRAM’s 5-7%. We will go into more depth on MRAM in a future article, but for now, suffice it to say that ReRAM has a long list of advantages over MRAM, and in our new study, we’ve outlined yet another advantage – ReRAM is much more ecologically friendly!
What we looked at
To read the full article, click here
Related Semiconductor IP
Related Blogs
- A Complete No-Brainer: ReRAM for Neuromorphic Computing
- The Pillars of ReRAM Success
- Setting a Foundation for Security with ReRAM
- ReRAM Gets a Boost from Smart Algorithms
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview