How Low Can You Go? An Inside Look at Weebit ReRAM Power Consumption
One of the key advantages of Weebit ReRAM (RRAM) is the technology’s ultra-low power consumption. Some of this advantage is due to the inherent features of the technology, and some of it is due to smart design. In this article we’ll explain why customers need a low power non-volatile memory (NVM) and what makes Weebit ReRAM lower power than other types of NVM. We’ll also explain a bit about some of the design techniques and levers that customers can use to adjust the power.
Why is low power consumption important?
In our rapidly warming climate, it has become critical to minimize carbon emissions, and this includes reducing the power consumption of everything we touch – from our homes to our cars to our personal electronic devices and beyond. This is now a key consideration at the government level in many countries, and is a key consideration for institutional investors.
At the practical level, for companies developing electronic products, low power consumption is often a key consideration, especially when it comes to battery operated IoT devices with Bluetooth® Low Energy or energy harvesting technology, and medical devices such as wearables and implantables.
Such devices must ensure that data gathered by tiny sensors is regularly and reliably delivered, often from remote or inaccessible locations. For many of these applications, whether in medical, transportation, agriculture, or other applications, reliability can have life or death consequences. Long battery life – supporting applications that last up to 10-15 years on one battery – is critical.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Functional, Fast, and Ultra-Low Power: A Live Look at Weebit's Second IP Module
- ARM's Cortex-A7 and A15: A Performance Versus Power Consumption Optimization Scheme
- Altera's Next-Generation FPGAs: Advanced Process Lithographies Lead to Performance, Power Consumption Efficiencies
- An Industry-Wide Look at the Move Toward Multi-Die Systems
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?