Measuring the complexity of processor bugs to improve testbench quality
I am often asked the question “When is the processor verification done?” or in other words “how do I measure the efficiency of my testbench and how can I be confident in the quality of the verification?”. There is no easy answer. There are several common indicators used in the industry such as coverage and bug curve. While they are absolutely necessary, these are not enough to reach the highest possible quality. Indeed, such indicators do not really unveil the ability of verification methodologies to find the last bugs. With experience, I learned that measuring the complexity of processor bugs is an excellent indicator to use throughout the development of the project.
What defines the complexity of a processor bug and how to measure it?
Experience taught me that we can define the complexity of a bug by counting the number of independent events or conditions that are required to hit the bug.
Related Blogs
- Using Synopsys Smart Monitors to Improve System Performance of Your Arm SoCs
- 5 ways to achieve the right level of customization
- The Evolution of Generative AI up to the Model-Driven Era
- Ambient IoT: 5 Ways Packetcraft's Software is Optimized to Enable the New Class of Connectivity
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?