Key Takeaways from the TSMC Technology Symposium Part 2
In Part 1, we reviewed four of the highlights of the recent TSMC Technology Symposium in San Jose. This article details the “Final Four” key takeaways from the TSMC presentations, and includes a few comments about the advanced technology research that TSMC is conducting.
(4) The 7nm node will immediately bifurcate into two technology offerings.
As mentioned in Part 1 of the symposium review, TSMC is expanding their focus to address a wider set of application markets. N7FF will be introduced with mobile and high-performance computing offerings from the start, with a corresponding design enablement “platform” releases for different markets.
Historically, the 55nm, 40nm, 28nm, and 16nm nodes have indeed been defined with multiple variants, and have continued to evolve beyond the initial offering -- e.g., the 55ULP, 40ULP, 28HPC+, and 16FFC technology options mentioned in Part 1. (TSMC indicated that the 10nm node will also subsequently receive an ultra-low power ULP release.)
Related Semiconductor IP
- 112G PHY, TSMC N7 x4, North/South (vertical) poly orientation
- 112G Ethernet PHY, TSMC N7 x4, North/South (vertical) poly orientation
- 112G Ethernet PHY, TSMC N7 x2, North/South (vertical) poly orientation
- 112G Ethernet PHY, TSMC N7 x1, North/South (vertical) poly orientation
- 112G Ethernet PHY, TSMC N6 x2, North/South (vertical) poly orientation
Related Blogs
- Key Takeaways from the TSMC Technology Symposium Part 1
- How Will EDA Benefit from the AI Revolution? - Part 2
- Designing Chips in the Cloud: Four Key Takeaways from SNUG Silicon Valley 2023
- The Top Five Takeaways from the Cybersecurity Panel at the Autonomous Tech Forum 2024
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?