FPGAs take on convolutional neural networks
In the context of machine learning, a convolutional neural network (CNN, or ConvNet) can perhaps best be defined as a category of feed-forward artificial neural network in which the connectivity pattern between its neurons is inspired by the organization of the animal visual cortex. According to Stanford staff, convolutional Neural Networks are quite similar to ordinary neural networks, as they are comprised of neurons that have learnable weights and biases.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- Push-button generation of deep neural networks
- Hierarchical Neural Networks
- Deployable Artificial Neural Networks Will Change Everything
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA