Push-button generation of deep neural networks
The term "deep learning" refers to using deep (multi-layer) artificial neural networks to make sense out of complex data such as images, sounds, and text. Until recently, this technology has been largely relegated to academia. Over the past couple of years, however, increased computing performance coupled with reduced power consumption and augmented by major strides in neural network frameworks and algorithms has thrust deep learning into the mainstream.
When I attended the Embedded Vision Summit recently, for example, I saw an amazing demonstration of machine vision in which a deep neural network (DNN) running on an FPGA was identifying randomly presented images in real time (check out this column to see a video). As an aside, one of the best lines I heard at the summit was "You can't swing a dead cat in here without some deep learning system saying 'Hey, that's a dead cat!'" But we digress...
As another example, take a look at this column describing how researchers at MIT used a deep learning algorithm to analyze videos showing tens of thousands of different objects and materials being prodded, scraped, and hit with a drumstick. The trained algorithm could subsequently watch silent videos and generate accompanying sounds sufficiently convincing to fool human observers.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- Hierarchical Neural Networks
- Deployable Artificial Neural Networks Will Change Everything
- Neural Networks and the Future
Latest Blogs
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces