Hierarchical Neural Networks
The German Traffic Sign Benchmark actually has the signs divided into groups: speed limits, danger signs, and so on. It turns out that humans make far fewer errors between groups than within groups. They might mistake a 30kph speed limit sign for an 80kph sign, but very rarely for a stop sign. The errors CNNs make are much less structured and are pretty much all over the place, so there is clearly room for improvement. How can we teach CNNs to be more like humans?
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- Push-button generation of deep neural networks
- Deployable Artificial Neural Networks Will Change Everything
- Neural Networks and the Future
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?