Hierarchical Neural Networks
The German Traffic Sign Benchmark actually has the signs divided into groups: speed limits, danger signs, and so on. It turns out that humans make far fewer errors between groups than within groups. They might mistake a 30kph speed limit sign for an 80kph sign, but very rarely for a stop sign. The errors CNNs make are much less structured and are pretty much all over the place, so there is clearly room for improvement. How can we teach CNNs to be more like humans?
To read the full article, click here
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- Push-button generation of deep neural networks
- Deployable Artificial Neural Networks Will Change Everything
- Neural Networks and the Future
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview