Deployable Artificial Neural Networks Will Change Everything
In recent months, evidence has continued to mount that artificial neural networks of the "deep learning" variety are significantly better than previous techniques at a diverse range of visual understanding tasks.
For example, Yannis Assael and colleagues from Oxford have demonstrated a deep learning algorithm for lip reading that is dramatically more accurate than trained human lip readers, and much more accurate than the best previously published algorithms.
Meanwhile, Andre Esteva, Brett Kuprel and colleagues at Stanford described a deep learning algorithm for diagnosing skin cancer that is as accurate as typical dermatologists (who, in the U.S., complete 12 years of post-secondary education before they begin practicing independently).
Even for tasks where classical computer vision algorithms have been successful, deep learning is raising the bar. Examples include optical flow (estimating motion in a sequence of video frames) and stereo matching (matching features in images captured by a pair of stereo cameras).
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- Push-button generation of deep neural networks
- Hierarchical Neural Networks
- Neural Networks and the Future
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms