Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics
The complexity of the silicon manufacturing processes has led to an explosion of data. Traditionally, engineering teams have had access to data pertaining to their step in the chip development process, but it’s been more challenging to obtain data from other phases of the chip’s lifecycle. More significantly, the raw data has been difficult to distill into useful insights. There’s a lot to sift through, and engineers need to know what to look for and what to query to make sense of it all. Considering the test data domain alone, there’s data stemming from wafer acceptance testing, bump, wafer sort, assembly, final test, and system-level test. There’s also critical importance in being able to tap into the data throughout the early design and manufacturing process, not just downstream. In short, both the depth and breadth of data support matters to help isolate and solve the root cause of any problems.
With semiconductor content rising in a number of application areas, there is growing urgency to move toward zero-defect approaches. The reality is, semiconductor defects are now commonly measured in parts per billion (ppb) rather than parts per million (ppm). Consider the automotive industry, where safety often hinges on the reliability and high performance of a vehicle’s electronic systems and semiconductor components. Even a seemingly miniscule defect rate can prove costly and potentially harmful and, hence, must be avoided. Never before has there ever been such an importance to accelerate convergence of quality and yield issues leveraging data analytics than now.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
- Flash Memory LDPC Decoder IP Core
Related Blogs
- SLM Solutions for Mission-Critical Aerospace and Government Chip Designs
- VIP Portfolio Expands for Data-Intensive Hyperscale Data Centers, HPC, and AI/ML
- How Chip Makers Are Defying Complexity and Innovating Faster
- Partial Header Encryption in Integrity and Data Encryption for PCIe
Latest Blogs
- What It Will Take to Build a Resilient Automotive Compute Ecosystem
- The Blind Spot of Semiconductor IP Sales
- Scalable I/O Virtualization: A Deep Dive into PCIe’s Next Gen Virtualization
- UEC-LLR: The Future of Loss Recovery in Ethernet for AI and HPC
- Trust at the Core: A Deep Dive into Hardware Root of Trust (HRoT)