Deep learning in five and a half minutes
For decades, algorithms engineers have been trying to make computers “see” as well as we do. That’s no small feat: though today’s smartphone cameras provide about the same high-resolution image sensing ability as the human eye—seven megapixels or so—the computer that processes that data is nowhere near a match for the human brain. Consider that roughly half the neurons in the human cortex are devoted to visual processing, and it’s no surprise it’s a pretty hard task for a computer too.
Algorithms engineers have been trying to make computer vision perform as well as our brain for decades, developing increasingly sophisticated algorithms to help machine vision inch its way forward. This process was primarily one of trial and error. In order to make a computer understand a picture, algorithms engineers tried to figure out what kinds of features to look for in the images. Should it look for colors, edges, points, gradients, histograms, or even complex combinations of those? These detected features were then fed into classical machine learning algorithms such as SVM, Adaboost, and random forests to train them. The results were pretty good — but not really good enough.
Then, in 2012, three developments came together to turbocharge computer vision progress.
To read the full article, click here
Related Blogs
- Scaling Out Deep Learning (DL) Inference and Training: Addressing Bottlenecks with Storage, Networking with RISC-V CPUs
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring
- Powering Up Efficiency: A Deep Dive into CXL L0p and its Verification
- CEVA Software Framework Brings Deep Learning to Embedded Vision Systems
Latest Blogs
- Physical AI at the Edge: A New Chapter in Device Intelligence
- Rivian’s autonomy breakthrough built with Arm: the compute foundation for the rise of physical AI
- AV1 Image File Format Specification Gets an Upgrade with AVIF v1.2.0
- Industry’s First End-to-End eUSB2V2 Demo for Edge AI and AI PCs at CES
- Integrating Post-Quantum Cryptography (PQC) on Arty-Z7