Conquering the memory bottleneck
James Mac Hale, Sonics, Inc.
9/14/2010 7:52 AM EDT
The evolution of high-bandwidth, consumer system on chip (SoC) devices is driving new design requirements as developers look for innovative ways to conquer bandwidth and efficiency issues on-chip. Today’s most popular home entertainment and mobile devices, such as smart phones, pad computers, high-definition TVs and personal media players, require an ever increasing number of processors that are dependent on sharing the same DRAM pipe. This has generated a substantial efficiency bottleneck for SoC designers and system architects.
Advanced SoCs now require a wide array of multiple processors and special-purpose processors that demand simultaneous memory access. Designers want to alleviate memory congestion and ensure memory efficiency and bandwidth are fully optimized in each design. However, the real challenge is for designers to retrieve that additional raw bandwidth, derive increased efficiencies on-chip and optimize DRAM access while beating market pressures and remaining on budget—all without incremental system costs.
The memory bottleneck challenge emerged because DRAM architectures have not evolved in response to DRAM requirements of SoC technology. These DRAM architectures have been driven by the needs of the PC market, and by the economic benefits of supply and commoditized pricing of a standardized memory product. For example, the DDR3 memory interface reaches higher interface speeds and higher bandwidth by drawing from more banks of DRAM internally, but the drawback is longer minimum burst length. This approach boosts absolute bandwidth and performance, but overall system efficiency goes down as a result when memory accesses are shorter than this minimum burst length (which is common in SoCs).
To read the full article, click here
Related Semiconductor IP
- NoC System IP
- Non-Coherent Network-on-Chip (NOC)
- Coherent Network-on-Chip (NOC)
- High speed NoC (Network On-Chip) Interconnect IP
- Smart Network-on-Chip (NoC) IP
Related White Papers
- Verification challenges of embedded memory devices
- DDR Memory Systems at the Heart of Consumer Electronics
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
- Memory Design Considerations When Migrating to DDR3 Interfaces from DDR2
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions