DDR3 memory - How to Win with Low Power and Reduced Thermal Solutions
Embedded.com (04/12/08, 07:26:00 PM EDT)
The power struggle between DDR2 and DDR3 continues the tradeoff game between bandwidth and latency. The timing shifts required by the DDR3 flyby topology change the time at which byte lanes demand power by utilizing additional Delay Lock Loop within the controller itself. More DLL's require more power and generate heat as a byproduct.
As the shifts in timing for read and writes are spread out, the demand for power over time dramatically reduces the impact on instantaneous demand on SSO. This is a definite advantage for the memory module where memory reads are generated. DDR3 also introduces a lower voltage further reducing power consumption.
The demand for low power in embedded applications has finally been echoed in the voices at the standards organizations. As the voltage levels for memory devices are reduced, the difference in absolute value between the core voltages and interconnect voltages has become smaller and smaller.
Since power consumption relates directly to core voltage, the reduction in power consumption from generation to generation of DRAM memory is rapidly diminishing.
The problem grows as we look into the arena of stacking components or stacking die into packages where thermal dissipation plays a predominant role; next generation generally means larger die size and more transistors consuming more power and generating more heat.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Memory Design Considerations When Migrating to DDR3 Interfaces from DDR2
- DDR3 memory interface controller IP speeds data processing applications
- Verification challenges of embedded memory devices
- DDR Memory Systems at the Heart of Consumer Electronics
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS