FPGA partial reconfiguration mitigates variability
Eric Shiflet and Lee Hansen, Xilinx
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Partial reconfiguration in FPGA rapid prototyping tools
- An MDE Approach For Implementing Partial Dynamic Reconfiguration In FPGAs
- Accelerate partial reconfiguration with a 100% hardware solution
- How to maximize FPGA performance
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor