FPGA partial reconfiguration mitigates variability
Eric Shiflet and Lee Hansen, Xilinx
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Partial reconfiguration in FPGA rapid prototyping tools
- An MDE Approach For Implementing Partial Dynamic Reconfiguration In FPGAs
- Accelerate partial reconfiguration with a 100% hardware solution
- Accelerating Architecture Exploration for FPGA Selection and System Design
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant