FPGA partial reconfiguration mitigates variability
Eric Shiflet and Lee Hansen, Xilinx
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
(04/03/2006 9:00 AM EDT), EE Times
Design variability is rapidly becoming the “norm” for electronics products. From packaging to logic functionality, electronic end products are expected to be more customized and configurable based on customer demand and field environment.
For logic design, this means the hardware must be able to handle a variety of functions, which leads to more devices and more real estate. A common method to handle this additional functionality has been to move them into switchable software modules handled by a microprocessor. However, a growing number of applications are relying on FPGA-based partial reconfiguration technology to leave logic functions in hardware, switch them in and out on demand — all while leaving your core logic running.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Partial reconfiguration in FPGA rapid prototyping tools
- An MDE Approach For Implementing Partial Dynamic Reconfiguration In FPGAs
- Accelerate partial reconfiguration with a 100% hardware solution
- How to Choose the Right FPGA
Latest Articles
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation