Accelerate partial reconfiguration with a 100% hardware solution
S. Lamonnier, M. Thoris, M. Ambielle, Sagem DS (Safran Group)
EETimes (5/26/2012 12:39 PM EDT)
In many modern applications such as video processing, minimizing FPGA reconfiguration time is critical in order to avoid losing too many images. Partial reconfiguration is a technique that allows users to reconfigure a small part of the FPGA without impacting logical elements around it. For the human eye to see an image without flicker, the reconfiguration time must be less than 40 milliseconds. That’s very little time to reconfigure an entire device, save for the smallest FPGAs; and in certain specific applications, this reconfiguration time must be even less. Hence the appeal of partial reconfiguration: Because a partial bitstream is smaller than a full one, it takes less time to reconfigure.
At Sagem DS, we have devised a technique that allows FPGA designers to accomplish partial reconfiguration very fast. The ML507 [1] was the Xilinx reference board we used for testing and validating the solution and to measure timing. Typically, the components on this board are a Virtex-5 FPGA (XC5VFX70T-FFG1136), a CPLD (used as a routing component) and two XCF32P memories (Xilinx Platform Flash).
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- PUF is a Hardware Solution for the Sunburst Hack
- Run by Chips, Secured with Chips - Hardware Security with NeoPUF solutions
- FPGA partial reconfiguration mitigates variability
- PRODUCT HOW-TO: Use ARM DBX hardware extensions to accelerate Java in space-constrained embedded apps
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY