Choosing an effective embedded SoC ASIC design strategy
Sunit Bansal, Freescale Semiconductor Inc.
EETimes (12/13/2010 8:18 PM EST)
In large and complex system-0n-chip ASIC design, two of the most challenging tasks are those involving design closure, timing routing and power.
It is a tedious task to converge on timing and routing, owing to the limitations of design size and the memory-intensive calculations. Essentially, it is dependent on the design size that an EDA tool can handle.
In such cases, it is advisable to go for a hierarchical approach instead of a flat top. Generally, the blocks are demarcated on the basis of functionality, backward compatibility, third party IP etc.
This article details the difference in terms of runtimes, routing congestion, timing summary and utilization for a design that is done as hierarchical vs. the same design using the flat approach.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Optimize SoC Design with a Network-on-Chip Strategy
- FPGA to ASIC Strategy for Communication SoC Designs
- An Efficient Device for Forward Collision Warning Using Low Cost Stereo Camera & Embedded SoC
- Usage of Multibit Flip-Flop and its Challenges in ASIC Physical Design
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models