Choosing an effective embedded SoC ASIC design strategy
Sunit Bansal, Freescale Semiconductor Inc.
EETimes (12/13/2010 8:18 PM EST)
In large and complex system-0n-chip ASIC design, two of the most challenging tasks are those involving design closure, timing routing and power.
It is a tedious task to converge on timing and routing, owing to the limitations of design size and the memory-intensive calculations. Essentially, it is dependent on the design size that an EDA tool can handle.
In such cases, it is advisable to go for a hierarchical approach instead of a flat top. Generally, the blocks are demarcated on the basis of functionality, backward compatibility, third party IP etc.
This article details the difference in terms of runtimes, routing congestion, timing summary and utilization for a design that is done as hierarchical vs. the same design using the flat approach.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related White Papers
- Optimize SoC Design with a Network-on-Chip Strategy
- FPGA to ASIC Strategy for Communication SoC Designs
- An Efficient Device for Forward Collision Warning Using Low Cost Stereo Camera & Embedded SoC
- Usage of Multibit Flip-Flop and its Challenges in ASIC Physical Design
Latest White Papers
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs