Modern Design Tools Facilitate Tuning DDR4 Signal Paths
Ben Jordan, Altium
EETimes (1/26/2015 12:15 PM EST)
Adjusting the lengths of signal tracks so that the delays are matched and meet the DDR4 specification would be an almost impossible task without modern design tools.
The latest standard in the race for ever-denser and ever-faster dynamic RAM is DDR4, short for double data rate, fourth-generation synchronous dynamic random-access memory. DDR4 memory will operate at speeds between 1600 MHz and 3200 MHz, compared to speeds between 800 MHz and 2400 MHz for DDR3 memory. Standard memory modules will be denser, too. The DDR4 standard specifies DIMMs up 128 Gbytes, compared to a maximum of 16 Gbytes for a DDR3 DIMM.
DDR4 modules employ a hybrid topology. DDR4 designs have parallel, length-matched transmission lines for the data bus and daisy-chained, length-matched transmission lines for the clock, address, and control bus lines. The latter type of topology is sometimes called "fly-by" topology. Each signal is routed sequentially from one device to the next and is then terminated after the last device.
To read the full article, click here
Related Semiconductor IP
- DDR4 IO for memory PHY, 3200Mbps on SMIC 40nm
- DDR5 & DDR4 COMBO IO for memory controller PHY, 4800Mbps on TSMC 12nm
- DDR4 & LPDDR4 COMBO IO for memory controller PHY, 3200Mbps on TSMC 22nm
- DDR3 and DDR4 Controller and PHY on TSMC 12nm
- Universal Multi-port Memory Controller for RLDRAM2/3, DDR5/4/3, DDR4 3DS and LPDDR3/2 and LPDDR3/2
Related White Papers
- Reconfiguring Design -> Reconfigurable computing aims at signal processing
- Reconfigurable signal processing key in base station design
- High-Performance DSPs -> DSPs tread many paths to raise performance
- SOC: Submicron Issues -> Deep signal integrity can be assured
Latest White Papers
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics
- In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips