Chiplet Strategy is Key to Addressing Compute Density Challenges
By Balaji Baktha, Ventana Micro Systems
EETimes (September 28, 2021)
Data center workloads are quickly evolving, demanding high compute density with varying mixes of compute, memory and IO capability. This is driving architectures that are moving away from a one-size-fits-all monolithic solution to disaggregated functions that can be independently scaled for specific applications.
It is imperative to adopt the latest process nodes to deliver the needed compute density. However, doing so with traditional monolithic SoCs presents an inherent disadvantage due to escalating costs and time to market challenges resulting in unfavorable economics. To address this dilemma, chiplet-based integration strategies are emerging where compute can benefit from the most advanced process nodes, while application-specific memory and IO integrations can reside on mature trailing process nodes.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Programmable Logic Holds the Key to Addressing Device Obsolescence
- Reconfiguring Design -> Reconfigurability: Designer's key strategy
- Clock domain modeling is essential in high density SoC design
- Addressing the new challenges of ASIC/SoC prototyping with FPGAs
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design