The Increasing Role of SystemC in System Design
Today's post is less technical and a bit more theoretical, but I promise that my next post will be more hands-on.
As somebody working on virtual platforms in an EDA company, I regularly spend time talking to firmware and embedded software engineers with many different backgrounds. Every so often one of them asks, "Why SystemC?" Some software engineers look at SystemC and decide that it looks like a real mess. They mention things like:
- SystemC has complex classes built with C++
- It uses strange macros like SC_MODULE, SC_METHOD, and SC_HAS_PROCESS
- Sometimes it can be difficult to find the cause of compilation errors
- SystemC takes a long time to compile
- Generally it doesn't provide much benefit for all this complexity
They ask, "what is wrong with plain C++ or even plain old C?" Most of the time they ask these questions because they don't understand how everything fits together.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related Blogs
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- AI Is Driving a New Frontier in Chip Design
- Design IP Sales Grew 20.2% in 2022 after 19.4% in 2021 and 16.7% in 2020!
Latest Blogs
- Breaking the Silence: What Is SoundWire‑I3S and Why It Matters
- What It Will Take to Build a Resilient Automotive Compute Ecosystem
- The Blind Spot of Semiconductor IP Sales
- Scalable I/O Virtualization: A Deep Dive into PCIe’s Next Gen Virtualization
- UEC-LLR: The Future of Loss Recovery in Ethernet for AI and HPC