The Increasing Role of SystemC in System Design
Today's post is less technical and a bit more theoretical, but I promise that my next post will be more hands-on.
As somebody working on virtual platforms in an EDA company, I regularly spend time talking to firmware and embedded software engineers with many different backgrounds. Every so often one of them asks, "Why SystemC?" Some software engineers look at SystemC and decide that it looks like a real mess. They mention things like:
- SystemC has complex classes built with C++
- It uses strange macros like SC_MODULE, SC_METHOD, and SC_HAS_PROCESS
- Sometimes it can be difficult to find the cause of compilation errors
- SystemC takes a long time to compile
- Generally it doesn't provide much benefit for all this complexity
They ask, "what is wrong with plain C++ or even plain old C?" Most of the time they ask these questions because they don't understand how everything fits together.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
Related Blogs
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- Design IP Sales Grew 20.2% in 2022 after 19.4% in 2021 and 16.7% in 2020!
- What Does the Future Hold for AI in Chip Design?
Latest Blogs
- Cadence Powers AI Infra Summit '25: Memory, Interconnect, and Interface Focus
- Integrating TDD Into the Product Development Lifecycle
- The Hidden Threat in Analog IC Migration: Why Electromigration rules can make or break your next tapeout
- MIPI CCI over I3C: Faster Camera Control for SoC Architects
- aTENNuate: Real-Time Audio Denoising