How to Design an LTE Modem
Designing an LTE modem is an interesting case study in architectural and system level design because it is pretty much on the limit of what is possible in a current process node such as 28nm. I talked to Johannes Stahl of Synopsys about how you would accomplish this with the Synopsys suite of system level tools. He is the first to admit that this is not a push-button flow where everything flows cleanly from one tool to the next, but more of a portfolio of technologies that can be used to get a modem done. Another complication over previous generations is that multiple radios can be used simultaneously.
LTE is actually a whole series of different standards with different uplink and downlink data rates, but one thing is constant: no matter what the data rate, the power dissipation of the modem must be such that the battery of the phone will last all day. So efficient tradeoff analysis is required to meet power and performance goals.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Qualcomm LTE Modem Competitors? Samsung, Intel, Mediatek, Spreadtrum, Leadcore... or simply CEVA!
- How LTE Modems Make or Break a Smartphone
- LTE will see larger deployments, higher volumes than WiMAX!
- How Do You Build a Wi-Fi 802.11ac Programmable Modem?
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility