What will it take for FPGAs to become as ubiquitous as processors?
The inspiration for this blog came from an article I read recently that talked about the rising number of FPGA design starts, the falling number of ASIC design starts, and the impact that this is having on the EDA industry.
It also pointed out that FPGAs still account for only a tiny fraction of the semiconductor revenues, so I thought I would add my own 2 cents to this discussion, not by regurgitating the data that has already been put out there, but to look at why FPGAs have not become as prevalent as the ever so humble microprocessor.
Let’s look at the microprocessor. It is a very inefficient device for almost every task. It is slow, it consumes a lot of power per unit of computation, and it is also one of the largest possible implementations in terms of chip size to perform the desired functions (bears a lot of similarity to the negative aspects of the FPGA, except that the FPGA is better on almost all counts). So why on earth did this device ever become so popular? I think it comes down to a few simple reasons – simplicity, independence, and abstraction. Let me explain what I mean by each of those and point out why the FPGAs at the moment do not meet the necessary expectations.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related Blogs
- Configurable Processors as an Alternative to FPGAs
- Commodity processor IP !?!
- Altera Licenses MIPS32 Processor Architecture
- Open ARM-wrestling in FPGAs
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?