Virtual prototyping speeds mixed-signal IC design
(08/21/2006 9:00 AM EDT), EE Times
Current design trends for high performance systems-on-chip (SoCs) are prompting designers to adopt more and more analog/mixed signal (AMS) contents in the overall design. Unlike digital designs that are quantized in the time and amplitude domains, AMS designs are more complex because performance, noise and other factors need to be controlled continuously in time and amplitude domain with very strict tolerances.
While the cost and performance benefits of SoCs are well known, in reality the complexity of design and verification of AMS ICs are making cutting-edge designs very time consuming and error prone, hence cost ineffective. The problem is further exacerbated by the lack of skilled AMS designers and adequate EDA tools.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Analog & Mixed Signal IC Debug: A high precision ADC application
- Mixed-level modeling allows IC virtual prototypes
- Efficient Verification and Virtual Prototyping of Analog and Mixed-Signal IP and SOCs Using Behavioral Models
- RTL Prototyping Brings Hardware Speeds to Functional Verification
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design