Top 5 predictions for eFPGA in 2022
By Andy Jaros, Flex Logix
embedded.com (January 30, 2022)
With the eFPGA now readily available in many process nodes from multiple suppliers, Flex Logix offers predictions on what we can expect to see around eFPGA development and use cases in 2022 and beyond.
The need for reconfigurability in systems on chip (SoCs) will continue to increase in 2022 along with the rapidly rising cost of developing SoCs especially at advanced process nodes. As prices increase, so does the pressure for SoC providers to generate a lot of revenue on their products. This can be possible if reconfigurability allows the SoC to be used in a wider range of applications. The embedded FPGA (eFPGA) approach can deliver that flexibility.
In the past, eFPGA was typically not the first intellectual property (IP) a chip architect would consider for a project. After all, there have been hundreds of thousands, if not millions, of chips designed without it. However, that mindset has been steadily changing and the most significant reason now is because customer requirements are more demanding.
They need more performance and lower power and at the same time, the cost and design cycles for chip development continues to skyrocket. These constantly changing demands require a changeable solution.
To read the full article, click here
Related Semiconductor IP
- eFPGA
- eFPGA on GlobalFoundries GF12LP
- Heterogeneous eFPGA architecture with LUTs, DSPs, and BRAMs on GlobalFoundries GF12LP
- eFPGA Soft IP
- Radiation-Hardened eFPGA
Related White Papers
- Top 5 Reasons why CPU is the Best Processor for AI Inference
- Nine Compelling Reasons Why Menta eFPGA Is Essential for Achieving True Crypto Agility in Your ASIC or SoC
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- The Future of Embedded FPGAs - eFPGA: The Proof is in the Tape Out
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design