The basics of designing wearable electronics with microcontrollers
Vairamuthu Ramasamy, Chethan Gowda, and Sivaguru Noopuran, Cypress Semiconductor
embedded.com (June 17, 2014)
‘Wearable’ devices are miniature electronic devices worn on the body, often integrated with or designed to replace existing accessories such as a watch. This market segment is booming, enabled by Internet of Things technology. Thus the need for smaller, more intuitive devices is rapidly increasing. Some of the current trends are smart watches, smart glasses, and sports and fitness activity trackers. In addition to the consumer market, the medical industry is creating a demand for devices that monitor physical conditions and functions.
The most important electronic component in wearable devices is the microcontroller. As these MCUs need to be small and at the same time perform more functions, integration becomes another important factor. In this article, we look at
- The different requirements for a wearable electronic system
- How the market can be segmented based on these requirements
- Different components in a typical wearable device
- How MCUs can address these requirements
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Revolutionizing Consumer Electronics with the power of AI Integration
- Streamlining SoC Integration With the Power of Automation
- Expanding the Horizon of System Monitoring with the Arm SMCF
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension