Scaling On-Device GPU Inference for Large Generative Models
Driven by the advancements in generative AI, large machine learning models have revolutionized domains such as image processing, audio synthesis, and speech recognition. While server-based deployments remain the locus of peak performance, the imperative for on-device inference, necessitated by privacy and efficiency considerations, persists. Recognizing GPUs as the on-device ML accelerator with the widest reach, we present ML Drift--an optimized framework that extends the capabilities of state-of-the-art GPU-accelerated inference engines. ML Drift enables on-device execution of generative AI workloads which contain 10 to 100x more parameters than existing on-device generative AI models. ML Drift addresses intricate engineering challenges associated with cross-GPU API development, and ensures broad compatibility across mobile and desktop/laptop platforms, thereby facilitating the deployment of significantly more complex models on resource-constrained devices. Our GPU-accelerated ML/AI inference engine achieves an order-of-magnitude performance improvement relative to existing open-source GPU inference engines.
To read the full article, click here
Related Semiconductor IP
- E-Series GPU IP
- Arm's most performance and efficient GPU till date, offering unparalled mobile gaming and ML performance
- 3D OpenGL ES 1.1 GPU IP core
- 2.5D GPU
- 2D GPU Hardware IP Core
Related Articles
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- RoMe: Row Granularity Access Memory System for Large Language Models
- SOC: Submicron Issues -> Large PLDs need own physical models
- Verifying large models in RTL simulation
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events