How to reduce power using I/O gating (CPLDs) versus sleep modes (FPGAs)
By Roger Seaman, Xilinx
September 20, 2006 -- pldesignline.com
Understanding the differences between low power CPLDs (that use built-in I/O gating features to save power) and non-volatile FPGAs (that employ "Sleep Modes").
This article discusses the differences between low power CPLDs with a built-in I/O gating feature, and the various "sleep modes" used by non-volatile FPGAs. Low power CPLDs with I/O gating have many advantages over sleep modes, including the ability to use selected portions of the device. These CPLDs are built on an inherently ultra-low-power patented technology that reduces standby current to as low as 20 microamps.
The technology, known as Fast Zero Power, enables you to build fast, low power handheld consumer devices using programmable logic. Internal input/output (I/O) gating is an advanced feature of these devices that enables the design to gate out unwanted signals during actual operation, thus saving additional power from unwanted toggling of I/Os and downstream logic. You have to ability to select the inputs and outputs for gating, and turn them on and off at will.
September 20, 2006 -- pldesignline.com
Understanding the differences between low power CPLDs (that use built-in I/O gating features to save power) and non-volatile FPGAs (that employ "Sleep Modes").
This article discusses the differences between low power CPLDs with a built-in I/O gating feature, and the various "sleep modes" used by non-volatile FPGAs. Low power CPLDs with I/O gating have many advantages over sleep modes, including the ability to use selected portions of the device. These CPLDs are built on an inherently ultra-low-power patented technology that reduces standby current to as low as 20 microamps.
The technology, known as Fast Zero Power, enables you to build fast, low power handheld consumer devices using programmable logic. Internal input/output (I/O) gating is an advanced feature of these devices that enables the design to gate out unwanted signals during actual operation, thus saving additional power from unwanted toggling of I/Os and downstream logic. You have to ability to select the inputs and outputs for gating, and turn them on and off at will.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- How to Design SmartNICs Using FPGAs to Increase Server Compute Capacity
- How to build a better DC/DC regulator using FPGAs
- How to power FPGAs with Digital Power Modules
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement