Using an FPGA to tame the power beast in consumer handheld MPUs
Using a programmable device to expand the capabilities of an embedded system, designers can reduce power consumption at the same time
By Rahul V. Shah and Vishesh Agrawal, eInfochips
The consumer handheld market is growing by leaps and bounds. With more processing power and increased support for more applications, portable products are cross-pollinating with traditional computing systems even as the product life cycle has decreased considerably in this market segment. As a result, especially in this era of economic slowdown, it is imperative that new products meet the time-to-market window to gain maximum acceptance. A decrease in product life cycles requires a reduced development cycle and an increased emphasis on reusability and reprogrammability.
The emerging handheld market is also seeing interesting trends in which each individual device in a family has lower volumes but there is more customization across the series of devices, effectively upping the total unit volumes. The key challenge then becomes how to develop a system that is widely reusable and also customizable.
These requirements have led designers increasingly to turn to the FPGA for handheld-product development. The FPGA has become more powerful and feature-rich, while gate counts, area and frequency have increased. FPGA development and turnaround cycles are considerably shorter than those of custom ASICs, and the added advantage of reprogrammability can make the FPGA a more compelling solution for handheld embedded systems.
In an ASIC- or an FPGA-based design, designers must take certain performance criteria into account. The challenges can be stated in terms of area, speed and power.
As with the ASIC, vendors are taking care of the area and speed challenges in FPGA design. With increased gate counts, the FPGA has more area and size to accommodate larger applications, and tools include better algorithms to utilize the area optimally. For example, technology advancements with newer standard-cell libraries have led to FPGAs achieving higher frequencies.
The newer and better FPGA technology brings with it a whole new set of challenges for the designer. Power utilization is one issue that moves to the forefront when designing an FPGA-based embedded system for a handheld or portable device.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Is FPGA power design ready for concurrent engineering?
- Shift Power Reduction Methods and Effectiveness for Testability in ASIC
- Embedded MPU vendors step out of the box
- Embedded MPU cores help programmable-logic suppliers fan out
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS