The art of FPGA construction
By Gina R. Smith, Brown-Smith Research and Development Laboratory Inc.
(01/06/08, 02:00:00 PM EST) -- Embedded.com
Over the last several years, the use of FPGAs has greatly increased in military and commercial products. They can be found in primary and secondary surveillance radar, satellite communication, automotive, manufacturing, and many other types of products. While the FPGA development process is second nature to embedded systems designers experienced in implementing digital designs on an FPGA, it can be confusing and difficult for the rest of us. Good communication is important when technical leads, supervisors, managers, or systems engineers interface with FPGA designers.
The key to good communication is having an understanding of the development process. A solid understanding will help you comprehend and extract relevant information for status reports, define schedule tasks, and allocate appropriate resources and time. There have been many times when my FPGA knowledge has allowed me to detect and correct errors, such as wrong part numbers or misuse of terms and terminology found in requirements and other documents.
Regardless of your final product, FPGA designers must follow the same basic process. The FPGA development stages are design, simulation, synthesis, and implementation, as shown in Figure 1. The design process involves converting the requirements into a format that represents the desired digital function(s). Common design formats are schematic capture, hardware description language (HDL), or a combination of the two. While each method has its advantages and disadvantages, HDLs generally offer the greatest design flexibility.
(01/06/08, 02:00:00 PM EST) -- Embedded.com
Over the last several years, the use of FPGAs has greatly increased in military and commercial products. They can be found in primary and secondary surveillance radar, satellite communication, automotive, manufacturing, and many other types of products. While the FPGA development process is second nature to embedded systems designers experienced in implementing digital designs on an FPGA, it can be confusing and difficult for the rest of us. Good communication is important when technical leads, supervisors, managers, or systems engineers interface with FPGA designers.
The key to good communication is having an understanding of the development process. A solid understanding will help you comprehend and extract relevant information for status reports, define schedule tasks, and allocate appropriate resources and time. There have been many times when my FPGA knowledge has allowed me to detect and correct errors, such as wrong part numbers or misuse of terms and terminology found in requirements and other documents.
Regardless of your final product, FPGA designers must follow the same basic process. The FPGA development stages are design, simulation, synthesis, and implementation, as shown in Figure 1. The design process involves converting the requirements into a format that represents the desired digital function(s). Common design formats are schematic capture, hardware description language (HDL), or a combination of the two. While each method has its advantages and disadvantages, HDLs generally offer the greatest design flexibility.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- Accelerating Architecture Exploration for FPGA Selection and System Design
- How to get more performance in 65 nm FPGA designs
- How to maximize FPGA performance
- How to Choose the Right FPGA
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement