Efficient analysis of CDC violations in a million gate SoC, part 2
Sanymi Gupta , Aniruddha Gupta & Ankush Sethi (Freescale Semiconductor)
EDN (February 03, 2014)
Reset path
One interesting topic of discussion is whether to use synchronous or asynchronous reset in design. In synchronous reset design, we use reset signal in the D path of flop. Hence, the assertion of reset will only effect or reset the state of the flop on the active edge of a clock. In some designs, the reset must be generated by a set of internal conditions. A synchronous reset is recommended for these types of designs because it will filter the logic equation glitches between clocks. But if we have some issues or failure leading to unavailability of clocks then we will not be able to reset/initialize the system. Only an asynchronous reset would work in such a condition. However, we may face metastability issues if de-assertion of this asynchronous reset is not synchronized properly.
Need of de-assertion synchronization for asynchronous reset?
If the asynchronous reset is de-asserted within the setup or hold window of clock of flop then there could be metastability at the flop’s output. So we need to synchronize the de-assertion of reset.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Efficient analysis of CDC violations in a million gate SoC, part 1
- Analysis of RDC Paths for a million gate SoC
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Scalability - A Looming Problem in Safety Analysis
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant