Data acquisition systems and SoCs - A guide
Asha Ganesan, Cypress
EDN (August 26, 2013)
Data acquisition systems (abbreviated with the acronym DAS or DAQ) measure real world signals (temperature, pressure, humidity etc.) by performing appropriate signal conditioning on a raw signal (amplification, level shifting, etc.), and then digitizing and storing these signals. This digital signals can then be transmit to another digital system for further processing, usually on a periodic basis.
Examples of data acquisition systems include such applications as weather monitoring, recording a seismograph, pressure, temperature and wind strength and direction. This information is fed to computers, which then predict natural events like rain and calamities like earthquakes and destructive winds. An example of a DAS in the medical field is a patient monitoring system that tracks signals like an ECG (Electro-cardiogram) or EEG (Electro-encephalogram).
A typical DAS consists of the following components:
- Sensors that convert real world phenomenon to equivalent electrical analog signals
- Signal conditioning circuitry that alters signals from the sensor to a form, which can be digitized
- Analog to digital converters that convert conditioned analog signals to a digital representation
- Store and forward memory, which is used to store digital signal streams for forwarding to another system at a later time
- A communication interface over which the digital streams are transferred to the other system
- A microprocessor system or a microcontroller to sequence and control all of the other components.
Figure 1 shows a block diagram of a basic data acquisition system. The details of these internal blocks are explained in the next section.
To read the full article, click here
Related Semiconductor IP
- EMFI Detector
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
Related White Papers
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- How to design secure SoCs, Part V: Data Protection and Encryption
- Design trade-offs of using SAR and Sigma Delta Converters for Multiplexed Data Acquisition Systems
Latest White Papers
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions