Creating highly reliable FPGA designs
Angela Sutton, Synopsys
EETimes (6/13/2013 12:04 PM EDT)
Radiation-induced soft errors – "glitches" – became widely known in the 1970s with the introduction of dynamic RAM chips. The problem emerged as a result of radioactive contaminants in chip packaging, which emit alpha particles as they decay and subsequently disturb electrons in the semiconductor. This disturbance can result in an unwelcome change in voltage levels in digital logic.
In combinational logic, the voltage disturbance will most likely be transient; an unwanted transient signal is known as a single event transient (SET). However, synchronous logic – such as state machines, registers and memory – can store and propagate the transient error, which is likely to result in hardware failure. Such a stored error is known as a single event upset (SEU).
As far back as 1996, researchers at IBM estimated that each 256MB of RAM suffers one error per month as a result of soft errors. The error rate grows as logic densities increase, switching voltage levels decrease and switching speeds rise. Today's bigger, faster FPGAs will suffer from higher soft-error rates.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- How to get more performance in 65 nm FPGA designs
- How to choose an RTOS for your FPGA and ASIC designs
- Generate FPGA designs from M-code
- Designing FPGA Based Reliable Systems Using Virtex-5 System Monitor
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics