Need really big FPGAs? Xilinx will be taking the "3D" route for initial Virtex 7 parts
Ivo Bolsens, the Xilinx CTO and Senior VP, presented a keynote at the 8th International SoC Conference a couple of weeks ago and one of the aspects of FPGA development that he discussed was Xilinx’ plan for creating large-capacity Virtex 7 FPGAs using 28nm process technology. Every leading-edge process technology experiences a learning curve and initially, it’s hard to make the largest possible chips in any new process technology with commercially viable yields. So Xilinx faced a problem: it would not be able to make the largest possible Virtex 7 FPGAs for a while using 28nm technology. What to do for those leading-edge customers who always want to use the largest, fastest parts as soon as possible?
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Is the Buzz around Xilinx's 2.5D FPGA Justified?
- PLD Overview: Xilinx and Altera
- What to read in Xilinx' and Altera's third quarter results
- Xilinx ARMs itself for battle
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?