Synopsys' EM5D and EM7D Processor Cores: The ARC Architecture Gains DSP Capabilities
Although the ARC brand has kept a relatively low profile since being acquired by Synopsys in 2009, Synopsys reports that the ARC family of licensable cores are on track to ship more than 1.5 billion units this year. Until recently, ARC's offerings were "vanilla" Harvard architecture CPUs with no DSP-optimized features. That's all changed with the latest EM5D and EM7D (the "D" standing for "DSP"), the first two members of the EM DSP family, which were introduced in late May and are generally available for licensing and implementations beginning this month.
ARC's DSP embrace is the result of two primary factors: evolving market requirements, and Synopsys' deep R&D pockets. As the April 2014 edition of InsideDSP noted, the ARC processor core came into the Synopsys fold via a multi-step process; ARC International was first acquired by Virage Logic in 2008, with Synopsys subsequently purchasing Virage Logic one year later. And, as that same InsideDSP article also noted, ARC isn't the only processor suite in Synopsys' product line; fully custom processor offerings are also available via Processor Designer (obtained via the 2012 acquisition of CoWare) and through the custom processor tool flow recently acquired in Synopsys' purchase of Target Compiler Technologies.
Related Semiconductor IP
- High-performance AI dataflow processor with scalable vector compute capabilities
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- High-quality and powerful display processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
Related Blogs
- Some critical considerations for SoC and Silicon Realization teams thinking about using ARM Cortex-A7 or ARM Cortex-A8 processor cores
- Understanding the Performance of Processor IP Cores
- Designing Energy-Efficient AI Accelerators for Data Centers and the Intelligent Edge
- Embracing Multi-Die Systems and Photonics for Aerospace and Government Applications
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?